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Abstract

We try to capture the instantaneous rate of event occurrence as a function
of time. A jagged or smooth rate function can be arbitrarily chosen, but
it is nevertheless possible to select a plausible smoothness according to the
principle of maximum likelihood. Upon optimization, the smoothness may
diverge, indicating that the data are insufficient to uncover the time dependence
of the underlying rate. By evaluating the likelihood function through a
marginalization path integral, we found not only first-order but also second-
order phase transitions leading to the divergence of the optimized smoothness.

PACS numbers: 02.50.Fz, 02.50.Ey, 02.50.Tt, 05.70.Fh

1. Introduction

Given a sequence of events, such as economic events, seismic activity or neuronal spikes,
we describe the rate as a function of time [1-5]. The smoothness of the rate function can be
chosen arbitrarily depending on one’s assumption or prejudice about the smoothness of the
underlying rate. The assumption for the smoothness can be incorporated in the Bayesian prior
probability of the underlying rate. It is nevertheless possible to select the very assumption
by maximizing the likelihood function, which is the probability of obtaining data given an
assumption about the underlying rate. This probability of events can be obtained through
‘marginalization’, the integration of a joint probability over the other arguments [6—10]. In the
present case, the marginalization is carried out through functional integration over potential
rate processes. Bialek et al pointed out that the marginalization can be carried out through
a corresponding path integral, a technique developed by Richard Feynman in the fields of
quantum mechanics and statistical mechanics [11].
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Figure 1. Events {t;} are derived from the underlying rate A(¢) according to the conditional
probability p({#;} | {*(t)}). The underlying rate is inferred from the data with the inverse
probability p({A(1)} | {#:}).

In the present paper, we formulated a method of evaluating the likelihood function for
the time-dependent Poisson process using a path integral for the marginalization, and applied
the formulation to two rate processes that are modulated sinusoidally and with the Ornstein—
Uhlenbeck process, respectively. We observed in these applications that the time scale of the
rate-estimation kernel diverges for events derived from a modestly fluctuating rate. The phase
transition describing the divergence can be either first order (discontinuous) or second order
(continuous), depending on the characteristics of the rate fluctuation.

2. The Bayes methods

Let us start with a time-dependent Poisson process in which events are derived from a given
underlying rate A(¢). In this process, the probability for events to occur at {t;} = {t1, t2, ..., t,}
in the period of ¢ € [0, T'] is given by

n T
p{u} 1 {A(D}) = |:1_[)\(ti):| exp (—fo A1) dt>, (D
i=1

where the exponential term is the survivor function that represents the probability that no
events occur in the inter-event intervals [12, 13].

Next, consider inverting the arguments of this conditional probability so that the unknown
underlying rate is inferred from the events received (see figure 1). This ‘inverse probability’
can be obtained using the Bayes formula

pu} | {A@OD py, (A0
py({ti}) '

In this paper, we introduce a prior distribution of A(#) that incorporates the tendency of the
estimated rate to be relatively flat:

1 1 (T (dan))
exp| ——= / L dr |, 3)
Z(y) 2y Jo dr
where y is a hyperparameter representing the degree of fluctuation and Z(y) is a normalization

constant. We can consider a higher order derivative of A(¢), but the qualitative features of the
results remain unchanged.

py(AM} | {6} =

2

py({r(D}) =
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Figure 2. The MAP estimate A (¢) for a given sequence of events {z; } depends on the hyperparameter
of the prior, y.
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The probability of having events p, ({f;}) in equation (2) can be obtained by the
‘marginalization’ of the joint probability,

p, (6] = / R

= fl’({ti} H{AOD py (1O DA}, “4)

where d{A(¢)} represents a functional integration over all possible paths of A(¢). This
probability, called the ‘marginal likelihood function’ or the ‘evidence’, represents a likelihood
function with respect to the hyperparameter. The method of selecting a hyperparameter by
maximizing the marginal likelihood function is called the ‘empirical Bayes’ [6—10].

2.1. The path integral method

The marginal likelihood function (4) can be represented in the form of a path integral,

T
p, (1) = %y) / exp [— fo LG, z>dr} o)), 5)

where L(X, A, t) is a ‘Lagrangian’ of the form
. 1 ., -
LGy t) = 272’\ +A—§8(r—t,~)logk. (6)

The maximum a posteriori (MAP) estimate of the rate, i(t), corresponds to the ‘classical
path’ obtained from the Euler—Lagrange equation,

d /0L oL
d <_) _AL 7
dr \ oA oA

Note that the MAP estimate A(r) depends critically on the hyperparameter y (see figure 2).
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The marginal likelihood function is obtained by performing the integration over all paths
of A(r) around the ‘classical path’, A(r). By approximating the action integral to a range
quadratic in the deviation from the classical path, the integral can be performed analytically
as [14-17]

T .
py({ti}) = Rexp [— / LG k1) dr} : ®)
0
where R represents the ‘quantum’ contribution of the quadratic deviation to the path integral:
— 1
L a2 B°L AN
R— ?:? det(ﬁal + mat — m)
2L a2
27T I det(a_Az 3?)
2 — _1
| 5 [AT0] .
2nT | fo(T,0) '

We obtained the determinant using the Gelfand—Yaglom method. f; and f5, respectively,
satisfy

PL , 0°L 3*L dfi(z, 0)

o 2= 22 A, 0) =0, 0,0) =0, — =1
(812 P W)fl( ) £1(0,0) il
3L d
— 9, f2(1,0) =0, f2(0,0) =0, ﬁ(,, 0 =L

8)u dt =0

2.2. Evaluation of the marginal likelihood

The maximization of the marginal likelihood function p, ({t;}) with respect to a particular
sequence of events can be carried out numerically by using the expectation and maximization
(EM) method [18-20]. Here, we formulate a method for computing a marginal likelihood
function averaged over the ensemble of event sequences derived from a given underlying
rate,

AMt) =p+of(t/7), (10)

where p is the mean rate and o f(¢/t) represents a rate fluctuation characterized by the
amplitude o and a time scale t. In each realization, the occurrence of events fluctuates around
the underlying rate, and ) '_, (¢ — #;) can be represented as a stochastic process [21],

A1) + /A @)E(2), (11)
where £(¢) is a white noise characterized by the ensemble averages (£(r)) = 0 and

(EMEM)) =8t —1).
As the rate is non-negative, the path integral defined by equation (5) should be carried
out in the half space, > > 0. Under the condition that the rate fluctuation is small, o/ < 1,
however, the orbits passing through A < 0 do not practically contribute to the integral.
Utilizing the same condition o/ < 1, the Lagrangian can be approximated to the range
quadratic in the deviation x(¢) = A(¢) — p as

L= %xz +x —{pn+oft/t)+Vu+oft/DEM)} log <1 + 2) (12)

2y
ol af(t/f)+\/ﬁ§(t)x+ix2 (13)
2)/2 I 21 ’
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where we have ignored the term of O((o/ w)3/%).  The solution of the Euler—Lagrange
equation (7), representing the ‘classical path’ for this Lagrangian, is given by

T
R(1) = ﬁ /0 e V(o f (s /1) + JRE(s)) ds. (14)

The ‘classical action’ fOT L(%, %, t) dt and the ‘quantum effect’ R are obtained analytically.
Utilizing the Euler—Lagrange equation, the classical action can be rewritten as

T T
/ Lt :/ {ii i) — Uf(t/f)“/ﬁé(t)fc}dz. (15)
0 0

2y2dt 21
The first term in the rhs representing the end-point effect is negligible compared to the second
term whose contribution is of the order of 7 > 1. The classical action can be obtained
explicitly by inserting the solution (equation (14)) into the second term of equation (15), and
assuming the stationarity of the event-rate fluctuation, as

/ / e {S(s)E(t)>+—<f(s/f)f(t/f)>}dsdf (16)

:_FT{lJFZ_f pu)ye it du} a7

where ¢ (u) = (f (u +u’) f (u')) is the correlation function of the rate fluctuation.
The ‘quantum’ contribution is obtained from equation (9), using

VR g Y (18)
2y 2y

fi(@,0) = f2(t,0) =1,

as

= (Ty /i)~ 2exp( Zf > (19)

Summing the classical action and quantum effect, the ‘free energy’ or the negative log
marginal likelihood function is written explicitly as

1 1 T
F(y)z—;lnpy({ti})z—F (logR—/O Ldt)

= (1oop [T gy G
_4¢ﬁ(1 2/3[0 ¢(u)efdu>, (20)

where B = o2t/ represents the degree of fluctuation in the underlying rate. The
hyperparameter y characterizing the fluctuation in the estimated rate can be selected so that
the marginal likelihood function p,, ({#;}) is maximized, or the free energy is minimized,

A

y = argmin F(y). 21
Y

3. Results

3.1. Sinusoidally regulated Poisson process

We applied this formula to two time-dependent Poisson processes. The first application is the
sinusoidally modulated process:

M(t) = p+osint/t. (22)
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Figure 3. Free energy functions F(y) for two rate processes. (a) The first-order phase transition
exhibited by the sinusoidally modulated Poisson process. (b) The second-order phase transition
exhibited by the doubly stochastic Poisson process.

The free energy for this case is

v B vt
4/ Ap+yit?
A vanishing hyperparameter y = 0 indicates a constant rate. This free energy defined for
y = 0 always has a minimum at y = 0, as dF (y)/dy|,—o > O (see figure 3(a)). As the
amplitude of rate fluctuation o is increased from zero to 8 > (4/3)3/2, another local minimum
appears at a finite . As the rate fluctuation o is increased further to 8 > 2, the minimum at a
finite y becomes lower than the minimum at y = 0, implying that event sequence should be
interpreted as being derived from a fluctuating rate. In the large fluctuation extreme g > 1,
the optimized time scale obeys the scaling relation

. _2 21 _1
VIRIP ~ o T s = B, 24
This is consistent with the result found by Bialek et al [11].

F(y) =

(23)

3.2. Doubly stochastic Poisson process

The second example application is the doubly stochastic process in which the rate obeys the
Ornstein—Uhlenbeck process,

dA A—u 2
& +o/ZE), (25)
dr T T
where £(¢) is a Gaussian white noise. Here, the free energy is
14 B v
F(y) = (26)

4/ 2 Ju+yt
It is notable that this free energy never has multiple minima (see figure 3(b)). The minimum

of this function defined for y > 0 stays at y = 0 until g exceeds 1/2. The optimized time
scale obeys the scaling relation

Vi/p ~oTlvit = pE, 27)

in the large fluctuation 8 > 1 extreme.
The different phase transitions in these two rate processes are due to the different functional
forms of the second term in the free energy (20) which is identical to the Laplace transform of
the rate-fluctuation correlation. In the sinusoidally modulated process, the Laplace transform
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has a peak at a finite frequency and the phase transition is of the first order (discontinuous).
In the Ornstein—Uhlenbeck process, the Laplace transform has no peak and the transition is of
the second order (continuous).

4. Summary

We carried out the exact marginalization with the path integral method, and optimized the time
scale of the rate-estimation kernel by maximizing the likelihood function. It was observed that
the time scale of the rate-estimation kernel diverges for the data derived from a moderately
fluctuating underlying rate. This implies that under such conditions, any rate estimated with
a finite time scale kernel is likely to capture a spurious rate. We also revealed that the time
scale diverges either discontinuously or continuously, or in other words, the phase transition
is of either the first or the second order.

In the evaluation of a path integral, the Lagrangian is approximated to the quadratic form
under the condition of o/ < 1, for which exact solutions can be obtained. Even in this limit,
the dimensionless parameter 8 = o>t/ can be made finite by choosing large 7. Thus, there
is certainly a range of parameters in which the conclusions about the type of phase transitions
are rigorous. In addition, we carried out numerical marginalization of the raw joint probability
distribution by means of the EM method and evaluated the free energy for a finite value of
o/, and confirmed that the numerical results are very close to the analytical results.

Note that the inability to estimate the rate is not necessarily due to the Bayesian method
applied to the kernel estimation. We have also formulated a method of optimizing a time
histogram under the principle of minimizing the mean integrated square error (MISE), and
found that the optimized bin size may diverge [22, 23]. The bin size of the time histogram plays
a similar role to the time scale of the rate-estimation kernel in determining the smoothness of
the rate. The parametric condition for the divergence of the optimal bin size and that of the
time scale of the rate-estimation kernel studied here are very similar (they are identical for
the doubly stochastic process; 8. = 1/2). The asymptotic characteristics (24) and (27) are
respectively the same as those for the optimal bin size determined with the MISE criteria. It
would be interesting to investigate the relationship of these apparently independent principles.
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